YouTube-Analysis

๐Ÿ“บ YouTube Trending Video Analysis

A full-stack analytics solution designed to uncover patterns in content performance, audience engagement, and channel behavior across global YouTube trends. This project analyzes 100,000+ trending videos to empower content strategists, media analysts, and creators with predictive insights and interactive dashboards for smarter publishing decisions.


๐Ÿš— GitHub Project Repository

๐Ÿ”— Click to view YouTube-Analysis


๐Ÿง  Project Overview

Understanding what makes a video trend is key to maximizing reach and engagement. This project delivers an end-to-end analytics platform that enables:


๐ŸŽฏ Key Objectives


๐Ÿ“ Project Structure

File Name Description
youtube.csv Raw dataset with trending video records
cleaned_youtube.csv Preprocessed dataset with feature engineering
youtube.sql SQL queries for data extraction and filtering
sqlconnect.py Python script for SQL database connection
youtube analysis.ipynb Jupyter notebook with EDA, modeling, and insights
trending_model.pkl Trained regression model for view prediction
trending_features.pkl Feature list used in modeling
channel_encoder.pkl Label encoder for channel names
country_encoder.pkl Label encoder for country names
app.py Streamlit app for dashboard deployment
YOUTUBE ANALYSIS DASHBOARD.accdb MS Access dashboard visualizing engagement and performance trends

๐Ÿงน Data Preprocessing


๐Ÿ“ˆ Exploratory Data Analysis


๐Ÿค– Modeling Approach


๐Ÿ“Š Dashboard Overview

๐Ÿ”ท MS Access Dashboard

Visualizes YouTube performance metrics and engagement trends:

Power BI Preview
Power BI Preview


๐ŸŸข Streamlit App

Interactive dashboard for real-time video performance prediction:

Streamlit Preview


๐Ÿš€ Deployment


๐Ÿง  Business Impact


๐Ÿ› ๏ธ Tech Stack


๐Ÿ“Œ Future Enhancements


๐Ÿ‘ค Author

Anesh Raj

๐Ÿ”— GitHub Profile